Addition and Subtraction: Inverse Operations (Addition and Subtraction)

Aim:

Add and subtract whole numbers with more than 4 digits, including using formal written methods.

To calculate using inverse operations.

Success Criteria:

I can add and subtract numbers with more than four digits using formal written methods.
I can use different representations to show how the inverse works.
I can use inverse operations to check answers to calculations.

Key/New Words:

Subtract, take, inverse, operation, difference, how many less, less, take away, minus, remove, fewer, decrease, add, addition, increase, more than, plus.

Resources:
Lesson Pack
Place value counters
Dice
Base ten blocks

Preparation:

Differentiated Playing with Numbers Board Game - one per pair
100 Squares - as required
Diving into Mastery Activity Sheets

- one per child

Prior Learning: It will be helpful if children have a secure understanding of place value. They may have previously added and subtracted

Learning Sequence

Inverse Representations: Using the scales and bar models that are represented on the Lesson Presentation,
children explore how inverse calculations work. The equals sign is described as a balance throughout this
section, helping children to recognise how inverse operations can help them to solve addition and subtraction
problems. Can children use different representations to show how inverse works? (laildren use the calculation shown on the Lesson Presentation to create a modelled representation

	Diving into Mastery: Schools using a mastery approach may prefer to use the following as an alternative activity. These sheets might not necessarily be used in a linear way. Some children might begin at the 'Deeper' section and in fact, others may 'dive straight in' to the 'Deepest' section if they have already mastered the skill and are applying this to show their depth of understanding. Children develop their fluency by using inverse operations to calculate the missing numbers from equations represented on scales and bar models. Children answer reasoning questions which address misconceptions about inverse operations involving addition and subtraction of numbers with up to six digits. Children solve problems involving inverse operations, adding and subtracting numbers with up to six digits. They spot the odd one out of a set of four representations of a calculation and solve equations with missing numbers using their understanding of inverse.	
\bigcirc	The 60-Second Challenge: Children turn to their partner and talk for 60 seconds about everything they remember from the lesson, using the success criteria to guide their discussion. After they have done this, children swap roles.	
Explorelt Practiselt: Learnit: Wordlt:	As a class, use the interactive Subtraction Grid Practice to review children's learning and discuss strategies use the answer. Children will find this visually exciting Knowledge Organiser a useful tool to support addition and subtraction. These Addition and Subtraction 4 Digit Worded Calculations Activity Sheets help children become familiar with expressed in words rather than digits and symbols.	work out ulations

Maths

Addition and Subtraction

Inverse Operations (Addition and Subbtraction)

Aim

- To calculate using inverse operations.

Success Criteria

- I can add and subtract numbers with more than four digits using formal written methods.
- I can use different representations to show how the inverse works.
- I can use inverse operations to check answers to calculations.

Remember It

Use place value counters to complete the model, representing the calculation shown.

Inverse Representations

Inverse operations can be used to find missing numbers within calculations.
In this calculation, the number in the blue rectangle is unknown.

In mathematics, the equals sign is a balance.

Performing the inverse of addition, which is subtraction, will give the missing number.

Inverse Representations

Therefore, $124928+99750$ balances with 224678 .

Regent Studies | www.regentstudies.com

Inverse Representations

Bar models are often used to represent calculations where an inverse operation is required.

In this example, the numbers from the scales are represented using a bar model.

224679	
124928	99750

Inverse Representations

In this example, two separate calculations balance with each other. Solve the number hidden behind the blue rectangle, to make the scales balance.

Calculating Using the Inverse

Choose a section and answer these questions using the inverse.
Remember to exchange and regroup where necessary.

			人
1)	$249+\square=300$	$2345+\square=6999$	$619497-\square=500101$
2)	$300-\square=249$	$13451-\square=10000$	$\begin{array}{r} 123582+\square \\ =100992+312993 \end{array}$
3)		$\begin{array}{r} 445708- \\ =109472 \end{array}$	$\begin{aligned} & \square+110192 \\ & =334829+99294 \end{aligned}$
4)		$120+382=99+\square$	$\begin{gathered} 900008+88002= \\ \square+522029 \end{gathered}$

Missing Number

Can you work out what the missing numbers are?

Solving Word Problems Using the Inverse

Flugtag is an event in which competitors attempt to fly their homemade human-powered

Solving Word Problems Using the Inverse

In pairs, have a go at working out the answer to the word problem.

Jake wants to attend the London Flugtag.

It is $\mathbf{4 2 5 k m}$ from Leeds to London. Jake travels 118 km in the morning.

How many more kilometres does Jake need to travel to complete his journey to London?

Solving Word Problems Using the Inverse

In pairs, have a go at working out the answer to the word problem.

A T-shirt stall at the Flugtag sold 1568 T-shirts on Saturday, but on Sunday, sales decreased by 325 T-shirts.

How many T-shirts did they sell at the weekend altogether? Represent your answer using bar models.

Solving Word Problems Using the Inverse

In pairs, have a go at working out the answer to the word problem.
Two teams spent the same amount of money building their flying machine for the Flugtag.

Team A know every part of their budget.
Part of Team B's budget is missing.
Use scales to solve and represent the total spent by each team.

Team A	Team B
$£ 96220$	$£ 89109$
$£ 145938$	
$£ 150$	$£ 1000$

£96 220 + £145 $938+£ 150=£ 242308$
£89 $109+£ 1000=£ 90109$ £242 308 - £90 $109=£ 152199$

| $109+£ 152199+£ 1000$ |
| :---: | :---: | :---: |

Playing with Numbers

Diving into Mastery

Dive in by completing your own activity!

60-Second Challenge

Turn to your partner and talk for 60 seconds about everything you remember about the lesson.

Use the success criteria to guide your discussion.
Then, swap roles.
Click the timer to start your 60-second countdown.

Aim

- To calculate using inverse operations.

Success Criteria

- I can add and subtract numbers with more than four digits using formal written methods.
- I can use different representations to show how the inverse works.
- I can use inverse operations to check answers to calculations.

Regent Studies | www.regentstudies.com

Aim: To calculate using inverse operations.				Date:					
				Delivered By:			Support:		
Success Criteria	Me	Friend	Teacher	T	PPA	S	I	AL	GP
I can add and subtract numbers with more than four digits using formal written methods.				Notes/Evidence					
I can use different representations to show how the inverse works.									
I can use inverse operations to check answers to calculations.									

Next Steps

T	Teacher	I	Independent
PPA	Planning, Preparation and Assessment	AL	Adult Led
S	Supply	GP	Guided Practice

Next Steps

T	Teacher	I	Independent
PPA	Planning, Preparation and Assessment	AL	Adult Led
S	Supply	GP	Guided Practice

100 Square

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

1) a) $6142-4085=2057$
b) $8756-5877=\mathbf{2 8 7 9}$
c) $7291-6534=757$
d) $5352-4867=485$
2) a)

6233	
4285	1948

c)

50000	
$\mathbf{2 4 9 9 1}$	25009

b)

d)

e)

116798			
87938	$\mathbf{1 9 0 0 3}$	9857	

1) The missing number can be found by carrying out two calculations:
$683774+1007=684781$
684781 - $600000=84781$
Peter was correct.
2) We know Mark is incorrect because you would need to subtract a larger number from 724678 than you would when subtracting from 119 938. If the same number were written in each box, the scales would not balance.
3) Lottie is right that addition is the inverse of subtraction, but if the missing number is the one being subtracted, we find it by subtracting the answer from the starting number. The bar model makes this concept easier to visualise.

15530	
9821	5709

1) A is the odd one out because B, C and D include the numbers $£ 23623$ and $£ 30672$ to total $£ 54$ 295, and the inverse of this.
2) $A=1958 p ; B=3177 p ; C=8438 p$
$£ 19.58+£ 31.77+£ 84.38=£ 135.73$
3) Multiple answers possible.
4) Solve the calculations, finding the numbers hidden on each scale.
a)

c)

b)

d)

e)

5) Complete each bar model.
a)

6233	
4285	

c)

50000	
	25009

b)

d)

e)

116798		
87938		9857

1) Peter and Sura are discussing the number of calculations that are needed to complete the equation shown.
$683774+1007-$ \qquad $=600000$

I think 3 separate calculations are needed to find the missing number, because there are 3 numbers in total.

Who do you agree with? Explain your answer fully.
\qquad
\qquad
\qquad
2) Mark says that the green boxes represent the same number within the calculation.

Can you prove it without doing the calculations?
\qquad
\qquad
3) Look at this question: 15 530-? = 9821

Can you help Lottie understand how to solve this calculation? It might help to draw a bar model.
\qquad
\qquad
\square
\qquad

1) Spot the odd one out and give an explanation to support your thinking.

\qquad
\qquad
\qquad
2) Linda went to three shops and got receipts A, B and C showing how much she spent in each transaction. She did these calculations.

Can you find out what the total cost of Linda's shopping was?
\qquad
\qquad
\qquad
\qquad
\qquad
3) Can you find 4 different pairs of numbers to satisfy the equation?
$456707-23596+?=456979-?+23695$

\qquad
\qquad
\qquad

1) Solve the calculations, finding the numbers hidden on each scale.
a)

b)

c)

d)

e)

2) Complete each bar model.
a)

6233	
4285	

b)

c)

50000	
	25009

d)

e)

1) Solve the calculations, finding the numbers hidden on each scale.
a)

b)

c)

d)

e)

2) Complete each bar model.
a)

b)

c)

d)

e)

116798		
87938		9857

1) Peter and Sura are discussing the number of calculations that are needed to complete the equation shown.

683774 + 1007 - \qquad = 600000

I think 3 separate calculations are needed to find the missing number, because there are 3 numbers in total.

I think the missing number can be found with 2 calculations.

Who do you agree with?

Explain your answer fully.
2) Mark says that the green boxes represent the same number within the calculation.

Do you agree?
Can you prove it without doing the calculations?
3) Look at this question: 15 530-? = 9821

The inverse of subtraction is addition, so to find the missing number, I need to add 9821 to 15530.

Can you help Lottie understand how to solve this calculation? It might help to draw a bar model.

1) Peter and Sura are discussing the number of calculations that are needed to complete the equation shown.

683774 + 1007 - \qquad = 600000

I think 3 separate calculations are needed to find the missing number, because there are 3 numbers in total.

I think the missing number can be found with 2 calculations.

Who do you agree with?

Explain your answer fully.
2) Mark says that the green boxes represent the same number within the calculation.

Do you agree?
Can you prove it without doing the calculations?
3) Look at this question: 15 530-? = 9821

The inverse of subtraction is addition, so to find the missing number, I need to add 9821 to 15530 .

Can you help Lottie understand how to solve this calculation? It might help to draw a bar model.

1) Spot the odd one out and give an explanation to support your thinking.
a)
£54 259
$£ 23623$
(b)

c)
£54 295 - ? = £30 672

2) Linda went to three shops and got receipts A, B and C showing how much she spent in each transaction. She did these calculations.

Can you find out what the total cost of Linda's shopping was?

3) Can you find 4 different pairs of numbers to satisfy the equation?
$456707-23596+?=456979-?+23695$

1) Spot the odd one out and give an explanation to support your thinking.

b)

$$
?=£ 23623+£ 30672
$$

c)

$$
£ 54295-?=£ 30672
$$

2) Linda went to three shops and got receipts A, B and C showing how much she spent in each transaction. She did these calculations.

Can you find out what the total cost of Linda's shopping was?

3) Can you find 4 different pairs of numbers to satisfy the equation?
$456707-23596+?=456979-?+23695$

Playing with Numbers

You have a budget of $\mathbf{£ 5 0} \mathbf{0 0 0}$. Take it in turns to roll the dice and move the required number of squares. If you land on a payment space, you must subtract that amount from your budget. If you land on a reward space, you must add that amount to your budget. The aim of the game is to complete the board without running out of money. Good luck!

						- - \%			P-un
80	79		77	Race entry charge $£ 19925$	75	74	Broken wing $£ 3598$	72	71
Shopping discount +£6999	62	63	64	65	66	67	68	69	70
60	59	58	Caught cheating $£ 3590$	56	55	54	53	52	51
41	42	43	44		46	47	Late for race £698	49	50
40	39	38	37	36	35	34	33	32	31
21	22	Purchase £169	24	25	Teamwork reward $+£ 5000$	27	28	29	
20	19	18	17	16	15		13	12	11
Start	2			5	6			9	10

$£ 50000$

Playing with Numbers

You have a budget of $\mathbf{£ 1 0 0} \mathbf{0 0 0}$. Take it in turns to roll the dice and move the required number of squares. If you land on a payment space, you must subtract that amount from your budget. If you land on a reward space, you must add that amount to your budget. The aim of the game is to complete the board without running out of money. Good luck!

						P-..x			P-un
80	79		77	Race entry charge £19 925	75	74	Broken wing £3598	72	71
Shopping discount $\text { +£39 } 999$	62	63	64	65	66	67	68	69	70
60	59	58	Caught cheating $£ 13590$	56	55	54	53	52	51
41	42	43	44		46	47	Late for race $£ 698$	49	50
40	39	38	37	36	35	34	33	32	31
21	22		24	25	Teamwork reward $+£ 32300$	27	28	29	
20	19	18	17	16	15		13	12	11
Start	2			5	6			9	10

£100 000

Playing with Numbers

You have a budget of $£ \mathbf{2 0 0} \mathbf{0 0 0}$. Take it in turns to roll the dice and move the required number of squares. If you land on a payment space, you must subtract that amount from your budget. If you land on a reward space, you must add that amount to your budget. The aim of the game is to complete the board without running out of money. Good luck!

141	Sponsorship funding $+£ 42608$	143	144	Flying machine too heavy £31 000	146	147	Used an engine during the contest £48569	149	Finish
140	139	Repaint $£ 36844$	137	136	135	134		132	131
121	Business investment $+£ 121118$	123	124	125		127	128	129	130
120	119	Purchase $£ 1754$	117	116	115	114	113	Competition prize money +£119 786	111
	102	103	Rain damage $£ 25953$	105	106		108	109	110
100	99	98	97		95	94	93	92	91
81	82	83	84	85			88	89	

						P-um			Prer
80	79		77	Race entry charge £19 925	75	74	Broken wing $£ 35985$	72	71
Shopping discount $+£ 53989$	62	63	64	65	66	67	68	69	70
60	59	58	Caught cheating $£ 135900$	56	55	54	53	52	51
41	42	43	44		46	47	Late for race £186 983	49	50
40	39	38	37	36	35	34	33	32	31
21	22		24	25	Teamwork reward $+£ 39765$	27	28	29	
20	19	18	17	16	15		13	12	11
Start	2			5	6			9	10

Playing with Numbers

You have a budget of $\mathbf{£ 5 0 0 0 0}$. Take it in turns to roll the dice and move the required number of squares. If you land on a payment space, you must subtract that amount from your budget. If you land on a reward space, you must add that amount to your budget. The aim of the game is to complete the board without running out of money. Good luck!

141	Sponsorship funding $+£ 15515$	143	144	Flying machine too heavy $£ 300$	146	147	Used an engine during the contest £8509	149	Finish
140	139	Repaint £368	137	136	135	134		132	131
121	Business investment $+£ 10000$	123	124			127	128	129	130
120	119	Purchase £1754	117	116	115	114	113	Competition prize money $+£ 7500$	111
	102	103	Rain damage £25 953	105	106		108	109	110
100	99	98			95	94	93	92	91
81	82	83		85	86		88	89	
80	79		77	Race entrycharge $\|$£19 925	75	74	$\begin{array}{\|l\|} \hline \text { Broken wing } \\ \hline £ 3598 \\ \hline \end{array}$	72	71
Shopping discount $+£ 6999$	62	63	64	65	66	67	68	69	70
60	59	58	Caught cheating $£ 3590$	56	55	54	53	52	51
41	42	43	44		46	47	Late for race $£ 698$	49	50
40	39	38	37	36	35	34	33	32	31
21	22	Purchase $£ 169$	24	25	Teamwork reward $+£ 5000$	27	28	29	
20	19	18	17	16	15		13	12	11
Start	2	3		5	6			9	10

Playing with Numbers

You have a budget of $\mathbf{£ 1 0 0} \mathbf{0 0 0}$. Take it in turns to roll the dice and move the required number of squares. If you land on a payment space, you must subtract that amount from your budget. If you land on a reward space, you must add that amount to your budget. The aim of the game is to complete the board without running out of money. Good luck!

141	Sponsorship funding $+£ 12329$	143	144	Flying machine too heavy £1300	146	147	Used an engine during the contest £18509	149	Finish
140	139	Repaint £3680	137	136	135			132	131
121	Business investment $+£ 28782$	123	124		Purchase	127	128	129	130
120	119	Purchase £1754	117	116	115	114	113	Competition prize money $+£ 45115$	111
	102	103	Rain damage £25 953	105	106		108	109	110
100	99	98	97		95	94	93	92	91
81	82	83		85	86		88	89	
80	79		77	Race entry charge £19 925	75	74	$\begin{array}{\|l\|} \hline \text { Broken wing } \\ \hline £ 3598 \\ \hline \end{array}$	72	71
Shopping discount $+£ 39999$	62	63	64	65	66	67	68	69	70
60	59	58	Caught cheating $£ 13590$	56	55	54	53	52	51
41	42	43	44		46		Late for race $£ 698$	49	50
40	39	38	37	36	35	34	33	32	31
21	22		24	25	Teamwork reward $+£ 32300$	27	28	29	
20	19	18	17	16	15		13	12	11
Start	2	3		5	6		$\begin{array}{\|l\|} \hline \text { Purchase } \\ £ 3900 \\ \hline \end{array}$	9	10

Playing with Numbers

You have a budget of $£ 200 \mathbf{0 0 0}$. Take it in turns to roll the dice and move the required number of squares. If you land on a payment space, you must subtract that amount from your budget. If you land on a reward space, you must add that amount to your budget. The aim of the game is to complete the board without running out of money. Good luck!

141	Sponsorship funding $+£ 42608$	143	144	Flying machine too heavy $£ 31000$	146	147	Used an engine during the contest $£ 48569$	149	Finish
140	139	Repaint $£ 36844$	137	136	135	134		132	131
121	Business investment $+£ 121118$	123	124	125		127	128	129	130
120	119	Purchase \square £1754	117	116	115	114	113	Competition prize money +£119 786	111
	102	103	Rain damage £25 953	105	106		108	109	110
100	99	98	97		95	94	93	92	91
81	82	83	84	85	86		88	89	
80	79		77	Race entry charge £19 925	75	74	Broken wing £35 985	72	71
Shopping discount + + 53989	62	63	64	65	66	67	68	69	70
60	59	58	Caught cheating $£ 135900$	56	55 w.regentstudies		53	52	51
41	42	43	44		46		Late for race £186 983	49	50
40	39	38	37	36	35	34	33	32	31
21	22		24	25	Teamwork reward $+£ 39765$	27	28	29	
20	19	18	17	16	15		13	12	11
Start	2	3		5	6			9	10

Addition and Subtraction | Inverse Operations (Addition and Subtraction)

To calculate using inverse operations.		
I can add and subtract numbers with more than four digits using formal written methods.		
I can use different representations to show how the inverse works.		
I can use inverse operations to check answers to calculations.		

Addition and Subtraction \| Inverse Operations (Addition and Subtraction)
To calculate using inverse operations. I can add and subtract numbers with more than four digits using formal written methods. I can use different representations to show how the inverse works. I can use inverse operations to check answers to calculations.

Addition and Subtraction | Inverse Operations (Addition and Subtraction)

To calculate using inverse operations.		
I can add and subtract numbers with more than four digits using formal written methods.		
I can use different representations to show how the inverse works.		
I can use inverse operations to check answers to calculations.		

Addition and Subtraction | Inverse Operations (Addition and Subtraction)

To calculate using inverse operations.	
I can add and subtract numbers with more than four digits using formal written methods.	
I can use different representations to show how the inverse works.	
I can use inverse operations to check answers to calculations.	

Addition and Subtraction | Inverse Operations (Addition and Subtraction)

To calculate using inverse operations.		
I can add and subtract numbers with more than four digits using formal written methods.		
I can use different representations to show how the inverse works.		
I can use inverse operations to check answers to calculations.		

Addition and Subtraction \| Inverse Operations (Addition and Subtraction)
To calculate using inverse operations. I can add and subtract numbers with more than four digits using formal written methods. I can use different representations to show how the inverse works. I can use inverse operations to check answers to calculations.

Addition and Subtraction \| Inverse Operations (Addition and Subtraction)
To calculate using inverse operations. I can add and subtract numbers with more than four digits using formal written methods. I can use different representations to show how the inverse works. I can use inverse operations to check answers to calculations.

